Légende
  • Halogènes
  • Métaux alcalino-terreux
  • Actinides
  • Gaz nobles
  • Métaux de transition
  • Autres
  • Métaux alcalins
  • Lanthanides
58
Ce
Cérium

Le cérium est parmi les éléments de la famille des terres rares, le plus abondant. Il peut être obtenu par une séparation partielle entre les terres rares et trouve des applications dans l’industrie verrière, l’élaboration des pots catalytiques automobiles, comme additif du carburant diesel.

Données physico-chimiques

Données atomiques

Numéro atomique Masse atomique Configuration électronique Structure cristalline Rayon atomique
58 140,1 g.mol-1 [Xe] 4f1 5d1 6s2 cubique à faces centrées de paramètre a = 0,485 nm 185 pm

Données physiques

Masse volumique Dureté Température de fusion Température d’ébullition Conductibilité électrique Conductibilité thermique Solubilité dans l’eau
6,757 g.cm-3 2,5 798°C 3 257°C 1,15.106 S.m-1 11,4 W.m-1.K-1 décomposé

Données chimiques

Électronégativité de Pauling pKa : Ceaq3+/Ce(OH)aq+ E° : Ce3+ + 3e = Ce(s) E° : CeIV + e = CeIII E° : CeOH3+ + H+ + e = Ce3+ + H2O pKs : Ce(OH)3 pKs  : Ce(OH)4
1,12 9 -2,33 V 1,74 à 1,28 V 1,70 V 22,3 54,8

Données thermodynamiques

Cérium cristallisé :

  • Entropie molaire standard à 298,15 K : S° = 57,8 J.K-1mol-1
  • Capacité thermique molaire sous pression constante à 298,15 K : Cp° = 25,9 J.K-1mol-1
  • Enthalpie molaire standard de fusion à la température de fusion : 8,8 kJ.mol-1
Cérium gazeux :

  • Enthalpie molaire standard de formation à 298,15 K : 355,8 kJ.mol-1

Données industrielles

Voir le produit terres rares. Ne sont détaillées ici que quelques données particulières, des données plus complètes sont développées dans le produit terres rares.

Les terres rares représentent le groupe des lanthanides (éléments de numéros atomiques compris entre 57 et 71, du lanthane au lutécium) auquel on ajoute, du fait de propriétés chimiques voisines (même colonne de la classification périodique), l’yttrium (Y) et le scandium (Sc). On distingue les terres cériques, légères (lanthane, cérium, praséodyme, néodyme et samarium) des terres yttriques, plus lourdes (les autres terres rares).

Malgré leur nom, les éléments constituant les terres rares ne sont pas rares. Le plus abondant, le cérium, est plus répandu dans l’écorce terrestre que le cuivre, le plus rare, le thulium, est 4 fois plus abondant que l’argent (voir le produit terres rares). Les teneurs sont, en général, exprimées sous forme d’oxydes.

Le cérium est l’élément le plus abondant de la famille des terres rares ou lanthanides.

État naturel

Le cérium est l’exemple le plus clair que l’appellation terres rares est inappropriée. En effet, sa teneur dans l’écorce terrestre est de 46 ppm, soit une teneur plus élevée que celle du cobalt et proche de celle du cuivre. Voir le produit terres rares pour plus de précisions.

Obtention

Toute la difficulté de la séparation, entre-elles, des terres rares réside dans leur similitude de propriétés chimiques. Toutefois, elles peuvent parfois se distinguer par leurs nombres d’oxydation. Des terres rares ne possèdent qu’un nombre d’oxydation (III). Quelques unes peuvent présenter deux nombres d’oxydation différents III et IV pour Ce, Pr, Tb ou II et III pour Eu, Sm et Yb. Pour le cérium et l’europium, cela est exploité pour leur récupération, à partir d’un mélange de terres rares en solution.

  • Procédé utilisé par Mountain Pass :
    Le cérium est oxydé de CeIII en CeIV à l’air à chaud, ou en solution, à l’aide de peroxyde d’hydrogène à pH 4, puis précipité sélectivement en oxyde de cérium hydraté (CeO2,2H2O).
  • Procédé Rhône-Poulenc utilisé par Solvay à La Rochelle : c’est un procédé de séparation continu par extraction liquide-liquide à l’aide de solvants.
    Le lanthane (à 99,995 % de pureté) est extrait, puis le cérium (à 99,5 %), le didyme (alliage Nd-Pr séparé ensuite en Pr à 98 % et Nd à 95 %), le samarium/europium (séparé ensuite en Sm à 98 % et Eu à 99,99 %), le gadolinium/terbium (séparé ensuite en Gd à 99,99 % et Tb à 99,9 %), et l’ensemble des autres terres rares, l’yttrium étant obtenu, en fin d’extraction, à 99,99 %.
    Lors des diverses extractions, réalisées en milieu nitrique, de nombreux types de solvants sont employés : acide di(2-ethylhexyl)phosphorique, tri(n-butyl)phosphate, sels d’ammonium quaternaire, acides carboxyliques… Dans l’usine de La Rochelle, plus de 1 100 étages de mélangeurs-décanteurs sont utilisés.

Utilisations

Industries du verre et des céramiques :

  • Polissage du verre optique : utilise de l’oxyde de cérium plus ou moins pur. Il a totalement remplacé l’oxyde de fer et est employé pour tous les types de surfaces à polir : verres de lunettes (2 g par verre), optique de précision, cristallerie, miroiterie, face avant des téléviseurs. Le polissage des écrans (téléviseurs, ordinateurs, smartphones, tablettes…) représente le principal marché. Après une mise en forme des pièces à l’aide de meules diamantées, celles-ci sont doucies par un abrasif (carbure de silicium ou diamant) en suspension aqueuse puis, le dépoli restant est éliminé par polissage à l’aide de poudre d’oxyde de cérium également en suspension aqueuse.
  • Décoloration du verre : le verre contient comme principale impureté colorante des oxydes de fer. Le pouvoir colorant de FeO étant supérieur à celui de Fe2O3, pour décolorer un verre, la première étape (décoloration chimique) consiste à oxyder les ions Fe2+. Parmi les divers oxydants utilisés, l’oxyde de cérium (CeO2), qui absorbe peu les rayonnements dans le spectre visible, est le plus employé. La quantité d’oxyde de cérium introduit correspond, en masse, à 2 à 3 fois celle de fer. La teinte jaunâtre résultant de ce premier traitement est éliminée en introduisant un colorant (autre oxyde de terre rare) absorbant fortement cette couleur (décoloration physique) : oxyde de néodyme (teneur égale à celle du fer) ou oxyde d’erbium.
  • Agent antibrunissement des verres : CeIV, à des teneurs de 1 à 2 % d’oxyde, incorporé aux verres subissant des rayonnements ionisants (face avant des tubes télévision, fenêtres de l’industrie nucléaire, fenêtres des installations de stérilisation UV), piège les électrons libérés par le rayonnement et se transforme en CeIII incolore. La formation de centres colorés (liés à la présence d’électrons interstitiels), à l’origine du brunissement, est ainsi évitée.
  • Absorbant fortement le rayonnement UV, l’oxyde de cérium, à des teneurs de 2 à 4 %, est également utilisé dans les verres de lunettes.
  • Émaux et céramiques : CeO2 est utilisé comme opacifiant des émaux, en concurrence avec TiO2.
  • Pigment rouge (Ce2S3, sulfure de cérium) : pour colorer les matières plastiques, en remplacement des pigments traditionnels, toxiques, à base de sulfure de cadmium. Rhodia, devenu Solvay, a lancé la production de tels pigments. La sulfuration a lieu aux Roches-Roussillon (38) et la finition du pigment à Clamecy (58). La capacité de production est de 500 t/an.

Manchons incandescents : c’est la première utilisation des terres rares, en 1891, par Carl Auer von Welsbach (chimiste autrichien) qui a mis au point un manchon incandescent permettant l’éclairage (par candoluminescence) par le gaz de ville. Cette technique est toujours utilisée dans l’éclairage de camping, au gaz. Le manchon de coton ou de soie artificielle est trempé dans une solution aqueuse de nitrates de thorium et de cérium, puis séché. Lors du premier chauffage, la fibre brûle et les nitrates sont transformés en oxydes. La composition est de 99 % de ThO2 et 1 % de CeO2. A la mort de von Welsbach, en 1929, environ 5 milliards de manchons avaient été produits, dans le monde. Actuellement, la fabrication et la commercialisation de manchons incandescents renfermant du thorium sont interdites en France. Le thorium est remplacé par de l’oxyde d’yttrium ou de zirconium avec toutefois une efficacité moindre.

La monazite, minerai de terres rares et de thorium a été d’abord traitée pour récupérer le thorium (et, en partie, le cérium) destiné aux manchons à gaz. Le résidu, les terres rares, était valorisé en métallurgie ou pour la fabrication des pierres à briquet.

Pot catalytique des automobiles : l’existence des 2 degrés d’oxydation du cérium permet aux oxydes de cérium de jouer soit un rôle d’oxydant (CeO2) soit un rôle de réducteur (Ce2O3). Pour fonctionner efficacement, la teneur en dioxygène au niveau du catalyseur de post-combustion doit rester dans les proportions stœchiométriques des réactions de combustion des composés imbrûlés (CO et hydrocarbures). L’oxyde de cérium joue un rôle de régulateur de la teneur en dioxygène. En présence d’un excès de dioxygène, l’oxyde de cérium stocke l’oxygène (Ce2O3 + 1/2O2 = 2CeO2), inversement, quand le dioxygène est en défaut, CeO2 le restitue. Le support du catalyseur (100 à 3000 ppm de Pd, Rh ou Pt) est en alumine avec environ 20 % en masse d’oxyde de cérium. Les qualités réfractaires des oxydes de cérium sont également appréciées dans cette application. Les catalyseurs 3 voies assurent, à 90 %, la conversion de CO en CO2 et des hydrocarbures imbrûlés, en CO2 et H2O.

Additif au carburant diesel : l’ajout au carburant diesel d’un additif (50 g/t) organo-soluble contenant 6 % de cérium, sous forme organométallique, permet d’améliorer la combustion des composés polyaromatiques (cancérigènes) condensés (suies, 300 000 t/an en Europe) émis par les moteurs diesel et ainsi de diminuer la pollution et la fumée noire émise. L’élimination des fumées noires est possible par combustion à 600°C mais cette température n’est pas atteinte par les gaz d’échappement d’un moteur froid et les particules bouchent les filtres destinés à les éliminer. L’ajout de cérium permet d’abaisser la température de combustion de 600 à 200°C et ainsi, de brûler les particules sitôt leur formation. Les 2 000 autobus d’Athènes, ville dont l’atmosphère est particulièrement polluée, sont équipés pour consommer ce carburant diesel.

Chimie analytique : dosages par oxydo-réduction à l’aide du couple Ce4+/Ce3+ (E° = 1,61 V).

 

×
En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies conformément à notre politique de données personnelles. En savoir plus..